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Abstract :  Singular perturbation problems arise as mathematical models in the various field of applied mathematics and engineering. 

In this work, some popular models of singular perturbation problems occurring in physical world have been described briefly.  

 

IndexTerms - Singular perturbation problems, ordinary differential equations, partial differential equations, boundary 

conditions. 

 

I. INTRODUCTION   

  In the field of chemistry, biology, physics and engineering many phenomenon can be defined by boundary value problems 

associated with different ordinary and partial differential equations. Singularly perturbed problems played an important role in the 

theory of  differential equations and in their applications to the physical world. In 1904, Prandtl introduced the concept of singular 

perturbations at the Third International Congress of Mathematicians in Heidelberg [27]. However, the term singular perturbations 

was first used in the work of Friedrichs and Wasow [12].  Singularly perturbation problems occur in various branches of engineering 

and applied mathematics such as boundary layers in fluid dynamics, skin layers in electrical networks, gas porous electrodes theory, 

shock layers in fluid and solid mechanics, edge layers in solid mechanics, diffraction theory, transition points in quantum mechanics, 

aerodynamics, reaction-diffusion processes, elasticity, oceanography, chemical reactor-theory, plasma dynamics. In such problems, 

perturbation parameters plays a role in a narrow region where the solution changes rapidly. This give rise to the occurrence of typical 

initial, interior and boundary layers in the solution of singular perturbation problems and prevent us from obtaining the satisfactory 

numerical solutions. Asymptotic analysis and Numerical analysis and the two main approaches to obtain the solution of singularly 

perturbed problems. Asymptotic analysis provide us the qualitative behavior of a family of problems and only some quantitative 

information about any particular member of the family. On the other hand, Numerical analysis approach provides the quantitative 

information about a particular problem. Numerical methods dealt with a broad class of perturbation problems and also minimize 

demands upon the problem solver. Asymptotic methods treat comparatively restricted classes of problems and require the problem 

solver to have some understanding of the behavior of the solution expected.   

  In this paper, some standard singularly perturbed models arising from the physical world are presented. 

 

II. SOME SINGULARLY PERTURBED MODELS 

 

1. Black Scholes Equation : 

  The financial data can be modeled by using the Black-Scholes equation 
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 where  ( , )C C S t  denotes the European call option. S and t  represents the current values of the asset and  time  respectively.   

,  ,  E T  and r  are used to denote the exercise price, expiry time, volatility and the risk free interest rate respectively  [21]. 

 

2. Britton Model for Population Dynamics : 

The singularly perturbed dynamical differential equation from population dynamics is  
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where ( , )v x t
is a population density that evolves through the reproduction and the random migration. The convolution operator 

is involved with a kernel ( , )f x t that models the distributed age structure dependence of the convolution and its dependence on 

the population levels in the neighborhood [3]. 

 

3. Child Swing : 

This is an example of real life. Swing is a simple model to see the effect on frequency and amplitude with a small change in 

length. This can be modeled by a mathematical equation as 
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with the angle ( )t  of the swing. 

4. Deformation Elastostatics of a Spherical Shell : 

Deformation elastostatics of an isotropic, homogeneous, thin spherical shell of constant thickness with axisymmetric normally 

distributed surface load. A stress function ( )  is defined by the following boundary value problem 
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        where  is the angle between the base plane and the meridional tangent,   be the meridional  angle change of the  deformed 

middle surface,    .Here ( 1)  is a constant and ( 0)v   is a typical value.  and  are the small perturbation parameters 

[4]. 

 

5. Dynamics of a Network of Two Amplifiers : 

The following system of first order differential equations represents the dynamical network of the two amplifiers having delayed 

outputs 
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with  ( ),  3mg C m  R R and ( 0)   is a small perturbation parameter  [7]. 

6. Drilling by Laser : 

The process of drilling (through a thick block) of a material using a laser is a one-dimensional model. The temperature relative to 

the ambient condition satisfies the following heat conduction equation 
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The vaporization condition at the bottom of the drill hole at ( , )x X t   is 

 ( ( , ), , ) 1.T X t t    

The speed of the drilling process is controlled by 

 1 ( ( , ), , ),    (0, ) 0.
dT dT

X t t X
dt dx
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7. Exit Time Problems and Phase Transition Models : 

The singularly perturbed boundary value problem 
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where   is an infinitesimal parameter and 0q  or 1 2q  . ,C D  and  T are some standard values. ( )f x  is a smooth 

function with the zeros in [ , ]C D . Such problems arise in the study of the exit time  problems for stochastic differential equations  

[22] and in the phase transition models [11]. 

 

8. Fokker-Planck Equation : 

The following second order differential equation describes the time independent Fokker-Planck equation 
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where  is a small perturbation parameter. The function ( )a x describes the gradient field and C  and D  are the 

constants [15]. 

9. Generalized Model of Neuronal Excitation : 

The initial value problem for diffusion process using first exit time theory to determine the time of first spike results in the 

singularly perturbed differential equation 
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where the exponential decay cause by the input processes between two consecutive jumps is described by the 
( , )u x t

t




. The 

membrane potential decay exponentially to the resting level with a membrane time constant  . The diffusion moments of Wiener 

process are 0  and  . The reaction terms correspond to the inhibitory inputs and superposition of excitatory can be assumed to 

be Poissonian [24]. Here, the amplitude sa  denotes the excitatory input with an intensity s  and the amplitude si describes the 

inhibitory input with an intensity s . This is a generalization of the Steins model  [29, 30]. 

 

10. Kinetics of Catalyzed Reaction : 

In the model, the concentration of the reactant varies according to the following differential equation 
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where 0 1  is a positive constant and (1, ) 0u   . 

 

11. Motion of Thin Liquid Film : 

The boundary value problems that arises in the theory of thin film flows with gravitational, viscous, and capillary forces is of the 

form 
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with 2 1/ (Re )Ca  , where Ca  denotes the Capillary number and Re  denotes Reynolds number [16]. 

  

12. Motion of a Mass : 

The motion of a mass moving in a medium with damping (proportional to the displacement) with either the damping large or the 

mass small is described by the following boundary value problem [25, 33] 

 
'' ' 0,    [0,1],

(0) ,   (1) .

u uu t

u u



 

  

 
 

 

 

http://www.ijrar.org/


© 2019 IJRAR March 2019, Volume 6, Issue 1                        www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 

IJRAR19H1167 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 115 
 

13. Motion of a Sunflower : 

The motion of a Sunflower is examined by the following singularly perturbed differential equation [26] 
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where ( )y t  denotes the angle of the plant with the vertical [6], r  and s  are the positive constants and 0    is a geotropic 

reaction time. 

 

14. Optical and Physiological Models : 

The mathematical models in biology, optics and physiology are given by following the singularly perturbed differential equation 

[10, 13, 17, 18, 19] 

 '( ) ( ) ( ( 1)).y t y t g y t     

Here for the functions like 1( ) (1 ) ,  0xg y y y x      and ( ) x yg y y e  , the equation occurs in physiological models and for 

1 2 3 4( ) sin( )g y y      , the equation arise in optics. 

 

15. Piston Problem : 

The flow of gas in a long, open-ended tube is modeled by the following differential equations 
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with the initial and boundary conditions 
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where 
0
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t

px t V t dt   and (0) 0V  . Here, v  denotes the speed of sound along the tube and u  is the speed of the sound in the 

gas. 

 

16. Processing of Metal Sheets : 

The processing of metal sheets is modeled by the following singularly perturbed partial differential equation 
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where v  denotes the distribution of the temperature in the metal sheet having velocity u  and is heated by the source, g . The 

speed of the controller introduces a fixed delay of length  [3]. 

 

17. Problem of a Stationary Diffusion Process : 

The stationary diffusion process including a reacting substance is defined by the following boundary value problem 
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where 0 1 , is a small perturbation parameter. The function ( , )g t u  is sufficiently smooth and 

2( , ) 0,   ( , ) [0,1]ug t u t u   R  [31]. 

 

18. Projectile Motion with Small Drag : 

A projectile moving in a two dimensional ( , )x z plane under the action of a drag force proportional to the square of the speed and 

a gravitational force is provided by the following system of equations 
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  and   is the angle of projection. 
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19. Quantum Mechanics : 

A quantum mechanics of a particle with a potential energy ( )V x  is described by an equation 

 2 '' ( ( ) ) ( ) 0.y V x E y x     

Here, E  denotes the total energy of the particle. For this problem, the term ( ) ( )V x E Q x   vanishes at the turning points where 

( )V x E . The classical orbit of a particle is confined to regions where ( )V x E  [5]. 

 

20. Steady State Navier Stokes Equation : 

The steady state Navier-Stokes equation is defined as 
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where Re 1/   refers the Reynolds's number with a small perturbation parameter 0 1  . Moreover   and   are prescribed 

on the boundary G [15]. 

 

21. Schordinger Equation : 

The one-dimensional Schrodinger equation is given by 
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where the potential energy ( )V t   as | | 1t   and 
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  with the mass ( )m  and the Planck's constant ( )h . 

  denotes 

the energy of the system [8]. 

 

22. The Allen-Cahn Equation in Material Science : 

The Allen-Cahn equation occurs in material sciences is given by the following system 
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where the function ( )v x  denotes the continuous realization of the phase in a material confined to the region   at the point x  

and   defines the outer unit normal to boundary   [1]. 

 

23. The Orr-Sommerfeld Equation : 

The Orr-Sommerfeld equation occurs in the field of fluid dynamics is of the form: 
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where 1/ R   with R , a very high Reynold's number and U denotes the perturbation velocity [2, 14, 20, 23, 28, 32, 34]. 

 

24. Van der Pol Equation : 

A Van der Pol model with a delayed time 0 / 2   was considered by Oliveira. The delayed differential equation is 

 2''( ) '( ) ( ) ( ) 0,u t u t u t u t        

where 0 1  is a small perturbation parameter [9]. 
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